skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wheeler, William A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Abstract Variational Monte Carlo methods have recently been applied to the calculation of excited states; however, it is still an open question what objective function is most effective. A promising approach is to optimize excited states using a penalty to minimize overlap with lower eigenstates, which has the drawback that states must be computed one at a time. We derive a general framework for constructing objective functions with minima at the the lowestNeigenstates of a many-body Hamiltonian. The objective function uses a weighted average of the energies and an overlap penalty, which must satisfy several conditions. We show this objective function has a minimum at the exact eigenstates for a finite penalty, and provide a few strategies to minimize the objective function. The method is demonstrated usingab initiovariational Monte Carlo to calculate the degenerate first excited state of a CO molecule. 
    more » « less
  3. We describe a new open-source Python-based package for high accuracy correlated electron calculations using quantum Monte Carlo (QMC) in real space: PyQMC. PyQMC implements modern versions of QMC algorithms in an accessible format, enabling algorithmic development and easy implementation of complex workflows. Tight integration with the PySCF environment allows for a simple comparison between QMC calculations and other many-body wave function techniques, as well as access to high accuracy trial wave functions. 
    more » « less